3.3.39 \(\int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))} \, dx\) [239]

Optimal. Leaf size=78 \[ \frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))} \]

[Out]

2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/a/d
/(e*cos(d*x+c))^(1/2)-2/3*(e*cos(d*x+c))^(1/2)/d/e/(a+a*sin(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2762, 2721, 2720} \begin {gather*} \frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*a*d*Sqrt[e*Cos[c + d*x]]) - (2*Sqrt[e*Cos[c + d*x]])/(3*d*
e*(a + a*Sin[c + d*x]))

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2762

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((g*Cos[e
 + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*Sin[e + f*x]))), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))} \, dx &=-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}+\frac {\int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{3 a}\\ &=-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}+\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a \sqrt {e \cos (c+d x)}}\\ &=\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.04, size = 64, normalized size = 0.82 \begin {gather*} -\frac {\sqrt [4]{2} \sqrt {e \cos (c+d x)} \, _2F_1\left (\frac {1}{4},\frac {7}{4};\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right )}{a d e \sqrt [4]{1+\sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])),x]

[Out]

-((2^(1/4)*Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 7/4, 5/4, (1 - Sin[c + d*x])/2])/(a*d*e*(1 + Sin[c + d*
x])^(1/4)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(189\) vs. \(2(94)=188\).
time = 3.86, size = 190, normalized size = 2.44

method result size
default \(-\frac {2 \left (2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\) \(190\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/(2*sin(1/2*d*x+1/2*c)^2-1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*(2*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2-(sin(1/
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*sin(1/2*d*x+1/2
*c)^2*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(1/((a*sin(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 104, normalized size = 1.33 \begin {gather*} \frac {{\left (-i \, \sqrt {2} \sin \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (i \, \sqrt {2} \sin \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 2 \, \sqrt {\cos \left (d x + c\right )}}{3 \, {\left (a d e^{\frac {1}{2}} \sin \left (d x + c\right ) + a d e^{\frac {1}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/3*((-I*sqrt(2)*sin(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (I*sqrt
(2)*sin(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 2*sqrt(cos(d*x + c))
)/(a*d*e^(1/2)*sin(d*x + c) + a*d*e^(1/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\sqrt {e \cos {\left (c + d x \right )}} \sin {\left (c + d x \right )} + \sqrt {e \cos {\left (c + d x \right )}}}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*cos(c + d*x))*sin(c + d*x) + sqrt(e*cos(c + d*x))), x)/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(e^(-1/2)/((a*sin(d*x + c) + a)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {e\,\cos \left (c+d\,x\right )}\,\left (a+a\,\sin \left (c+d\,x\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))),x)

[Out]

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))), x)

________________________________________________________________________________________